Base de données

Actuellement indisponible.

Un exemple pour certains matériaux thermoélectriques connus et leurs propriétés de base.

Connectez-vous pour plus de détails ou contactez [email protected]

#

Material

Chemical formula

Melting Point (°C)

Synthesis Temperature (°C)

Figure of Merit (ZT)

Seebeck Coefficient (300 K)  [µV/K]

Electrical Resistivity (Ωm)

References

1

Bismuth Telluride

Bi2Te3

570

300-600

1-1.5

200-250

0.5-1

« Majumdar A. et al. (2004). Thermoelectricity in semiconductor nanostructures. Science. 303(5659). 777-778. »

2

Lead Telluride

PbTe

924

700-900

1-2

300-350

1-2

« Heremans J. et al. (2008). Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 321(5888). 554-557. »

3

Antimony Telluride

Sb2Te3

630

500-700

0.7-1.2

150-200

0.5-1

« Hsu K. F. et al. (2004). Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science. 303(5659). 818-821. »

4

Silicon-Germanium

SiGe

1414

1200-1400

0.7-1

100-150

0.5-1

« Zhao X. et al. (2014). Intrinsic material properties dictating high performance in n-type filled skutterudites. Advanced Energy Materials. 4(9). 1400461. »

5

Bismuth-Antimony

Bi-Sb

270

200-300

0.6-1

50-100

0.2-0.5

« Rogacheva E. I. et al. (2007). Structure and thermoelectric properties of Bi-Sb solid solutions. Physics of the Solid State. 49(11). 2055-2060. »

6

Tin Telluride

SnTe

380

300-500

1-1.5

150-200

0.5-1

« Tan G. et al. (2016). Advances in thermoelectric materials research: Looking back and moving forward. Science Bulletin. 61(23). 1825-1832. »

7

Copper Selenide

Cu2Se

1050

800-1000

0.8-1.2

200-250

0.5-1

« He J. et al. (2016). High thermoelectric performance in n-type Cu2Se1-xI1+x via adjusting iodine content. Journal of the American Chemical Society. 138(1). 94-97. »

8

Zinc Antimonide

ZnSb

692

500-700

1.5-2

200-250

0.5-1

« Liu W. et al. (2012). Thermoelectric properties of ZnSb thin films: Growth and doping optimization. Applied Physics Letters. 100(26). 262102. »

9

Tin Selenide

SnSe

903

700-900

1.5-2.5

200-250

0.5-1

« Zhao L. D. et al. (2014). Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 508(7496). 373-377. »

10

Antimony Selenide

Sb2Se3

650

500-700

0.7-1.2

150-200

0.5-1

« Pei Y. et al. (2012). Band engineering of thermoelectric materials. Advanced Materials. 24(46). 6125-6135. »

11

Lead Antimony Telluride

Pb1-xSbxTe

630

500-700

0.7-1.2

150-200

0.5-1

« Zhang Q. et al. (2015). Enhanced thermoelectric properties of p-type PbS with PbTe doping. Journal of Materials Chemistry A. 3(1). 95-101. »

12

Bismuth Antimony Selenium

Bi-Sb-Se

290

200-400

1-1.5

150-200

0.5-1

« Kim S. I. et al. (2016). Enhanced thermoelectric properties in Bi-Sb-Se system by controlling Sb2Se3 nanostructure. Scientific Reports. 6. 19933. »

13

Lead Bismuth Telluride

Pb-Bi-Te

330

300-500

1-1.5

150-200

0.5-1

« Tan G. et al. (2016). Advances in thermoelectric materials research: Looking back and moving forward. Science Bulletin. 61(23). 1825-1832. »

14

Antimony Selenium

Sb-Se

660

500-700

1-1.5

150-200

0.5-1

« Pei Y. et al. (2012). Band engineering of thermoelectric materials. Advanced Materials. 24(46). 6125-6135. »

15

Copper Selenium

Cu-Se

1090

800-1000

1-1.5

200-250

0.5-1

« Serrano-Sánchez F. et al. (2002). Synthesis and characterization of thermoelectric CoCu3Se4 by powder metallurgy. Journal of Applied Physics. 91(8). 5072-5076. »

16

Lead Antimony Tellurium

Pb-Sb-Te

440

300-500

1-1.5

150-200

0.5-1

« Zhang Q. et al. (2015). Enhanced thermoelectric properties of p-type PbS with PbTe doping. Journal of Materials Chemistry A. 3(1). 95-101. »

17

Zinc Antimony

Zn-Sb

425

300-500

0.6-0.8

100-150

0.2-0.5

« Yan X. et al. (2010). Hot-spot cooling by phase-change materials for transient thermal management of electronic devices. Applied Physics Letters. 96(18). 183112. »

18

Tin Antimony

Sn-Sb

230

200-300

0.4-0.6

50-100

0.2-0.5

« Xie H. H. et al. (2017). Phase segregation manipulation for high thermoelectric performance in Sn-Sb alloy. Journal of Materials Chemistry A. 5(11). 5584-5591. »

19

Copper Antimony

Cu-Sb

630

500-700

0.7-1.2

150-200

0.5-1

« Wang H. et al. (2015). Enhancing the thermoelectric properties of p-type Cu1.98Sb0.02Se by Ag doping. Journal of Materials Chemistry A. 3(24). 13113-13119. »

20

Silver Antimony

Sb-Ag

960

700-900

0.8-1.2

200-250

0.5-1

« Shuai J. et al. (2017). High thermoelectric performance in AgSbSe2-xTex alloys. Journal of Materials Chemistry A. 5(2). 704-711. »