Base de données
Actuellement indisponible.
Un exemple pour certains matériaux thermoélectriques connus et leurs propriétés de base.
Connectez-vous pour plus de détails ou contactez [email protected]
# |
Material |
Chemical formula |
Melting Point (°C) |
Synthesis Temperature (°C) |
Figure of Merit (ZT) |
Seebeck Coefficient (300 K) [µV/K] |
Electrical Resistivity (Ωm) |
References |
1 |
Bismuth Telluride |
Bi2Te3 |
570 |
300-600 |
1-1.5 |
200-250 |
0.5-1 |
« Majumdar A. et al. (2004). Thermoelectricity in semiconductor nanostructures. Science. 303(5659). 777-778. » |
2 |
Lead Telluride |
PbTe |
924 |
700-900 |
1-2 |
300-350 |
1-2 |
« Heremans J. et al. (2008). Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 321(5888). 554-557. » |
3 |
Antimony Telluride |
Sb2Te3 |
630 |
500-700 |
0.7-1.2 |
150-200 |
0.5-1 |
« Hsu K. F. et al. (2004). Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science. 303(5659). 818-821. » |
4 |
Silicon-Germanium |
SiGe |
1414 |
1200-1400 |
0.7-1 |
100-150 |
0.5-1 |
« Zhao X. et al. (2014). Intrinsic material properties dictating high performance in n-type filled skutterudites. Advanced Energy Materials. 4(9). 1400461. » |
5 |
Bismuth-Antimony |
Bi-Sb |
270 |
200-300 |
0.6-1 |
50-100 |
0.2-0.5 |
« Rogacheva E. I. et al. (2007). Structure and thermoelectric properties of Bi-Sb solid solutions. Physics of the Solid State. 49(11). 2055-2060. » |
6 |
Tin Telluride |
SnTe |
380 |
300-500 |
1-1.5 |
150-200 |
0.5-1 |
« Tan G. et al. (2016). Advances in thermoelectric materials research: Looking back and moving forward. Science Bulletin. 61(23). 1825-1832. » |
7 |
Copper Selenide |
Cu2Se |
1050 |
800-1000 |
0.8-1.2 |
200-250 |
0.5-1 |
« He J. et al. (2016). High thermoelectric performance in n-type Cu2Se1-xI1+x via adjusting iodine content. Journal of the American Chemical Society. 138(1). 94-97. » |
8 |
Zinc Antimonide |
ZnSb |
692 |
500-700 |
1.5-2 |
200-250 |
0.5-1 |
« Liu W. et al. (2012). Thermoelectric properties of ZnSb thin films: Growth and doping optimization. Applied Physics Letters. 100(26). 262102. » |
9 |
Tin Selenide |
SnSe |
903 |
700-900 |
1.5-2.5 |
200-250 |
0.5-1 |
« Zhao L. D. et al. (2014). Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 508(7496). 373-377. » |
10 |
Antimony Selenide |
Sb2Se3 |
650 |
500-700 |
0.7-1.2 |
150-200 |
0.5-1 |
« Pei Y. et al. (2012). Band engineering of thermoelectric materials. Advanced Materials. 24(46). 6125-6135. » |
11 |
Lead Antimony Telluride |
Pb1-xSbxTe |
630 |
500-700 |
0.7-1.2 |
150-200 |
0.5-1 |
« Zhang Q. et al. (2015). Enhanced thermoelectric properties of p-type PbS with PbTe doping. Journal of Materials Chemistry A. 3(1). 95-101. » |
12 |
Bismuth Antimony Selenium |
Bi-Sb-Se |
290 |
200-400 |
1-1.5 |
150-200 |
0.5-1 |
« Kim S. I. et al. (2016). Enhanced thermoelectric properties in Bi-Sb-Se system by controlling Sb2Se3 nanostructure. Scientific Reports. 6. 19933. » |
13 |
Lead Bismuth Telluride |
Pb-Bi-Te |
330 |
300-500 |
1-1.5 |
150-200 |
0.5-1 |
« Tan G. et al. (2016). Advances in thermoelectric materials research: Looking back and moving forward. Science Bulletin. 61(23). 1825-1832. » |
14 |
Antimony Selenium |
Sb-Se |
660 |
500-700 |
1-1.5 |
150-200 |
0.5-1 |
« Pei Y. et al. (2012). Band engineering of thermoelectric materials. Advanced Materials. 24(46). 6125-6135. » |
15 |
Copper Selenium |
Cu-Se |
1090 |
800-1000 |
1-1.5 |
200-250 |
0.5-1 |
« Serrano-Sánchez F. et al. (2002). Synthesis and characterization of thermoelectric CoCu3Se4 by powder metallurgy. Journal of Applied Physics. 91(8). 5072-5076. » |
16 |
Lead Antimony Tellurium |
Pb-Sb-Te |
440 |
300-500 |
1-1.5 |
150-200 |
0.5-1 |
« Zhang Q. et al. (2015). Enhanced thermoelectric properties of p-type PbS with PbTe doping. Journal of Materials Chemistry A. 3(1). 95-101. » |
17 |
Zinc Antimony |
Zn-Sb |
425 |
300-500 |
0.6-0.8 |
100-150 |
0.2-0.5 |
« Yan X. et al. (2010). Hot-spot cooling by phase-change materials for transient thermal management of electronic devices. Applied Physics Letters. 96(18). 183112. » |
18 |
Tin Antimony |
Sn-Sb |
230 |
200-300 |
0.4-0.6 |
50-100 |
0.2-0.5 |
« Xie H. H. et al. (2017). Phase segregation manipulation for high thermoelectric performance in Sn-Sb alloy. Journal of Materials Chemistry A. 5(11). 5584-5591. » |
19 |
Copper Antimony |
Cu-Sb |
630 |
500-700 |
0.7-1.2 |
150-200 |
0.5-1 |
« Wang H. et al. (2015). Enhancing the thermoelectric properties of p-type Cu1.98Sb0.02Se by Ag doping. Journal of Materials Chemistry A. 3(24). 13113-13119. » |
20 |
Silver Antimony |
Sb-Ag |
960 |
700-900 |
0.8-1.2 |
200-250 |
0.5-1 |
« Shuai J. et al. (2017). High thermoelectric performance in AgSbSe2-xTex alloys. Journal of Materials Chemistry A. 5(2). 704-711. » |